Konsep Titik, Garis, dan Bidang
Perhatikan gambar berikut ini,
$\clubsuit $ Titik tidak memiliki ukuran, biasanya dideskripsikan menggunakan tanda noktah, seperti pada gambar di atas. Penamaan titik menggunakan huruf kapital, seperti titik A, titik B, titik C, dan sebagainya.
$\clubsuit $ Garis direpresentasikan oleh suatu garis lurus dengan dua tanda panah di setiap ujungnya yang mengindikasikan bahwa garis tersebut panjangnya tak terbatas.
$\clubsuit $ Suatu bidang direpresentasikan oleh permukaan meja atau dinding. Pada Gambar di atas bidang $ \alpha \, $ memiliki luas yang tak terbatas.
$\clubsuit $ Titik tidak memiliki ukuran, biasanya dideskripsikan menggunakan tanda noktah, seperti pada gambar di atas. Penamaan titik menggunakan huruf kapital, seperti titik A, titik B, titik C, dan sebagainya.
$\clubsuit $ Garis direpresentasikan oleh suatu garis lurus dengan dua tanda panah di setiap ujungnya yang mengindikasikan bahwa garis tersebut panjangnya tak terbatas.
$\clubsuit $ Suatu bidang direpresentasikan oleh permukaan meja atau dinding. Pada Gambar di atas bidang $ \alpha \, $ memiliki luas yang tak terbatas.
Kedudukan Titik pada garis dan Bidang
Berikut ada beberapa posisi titik atau letak titik terhadap garis dan bidang :
i). Posisi titik terhadap garis
ii). Posisi titik terhadap bidang
iii). Titik-titik segaris (kolinear)
Dua atau lebih dikatakan segaris jika titik-titik tersebut terletak pada garis yang sama. Pada Gambar di bawah ini, titik A dan titik B dikatakan segaris, karena sama-sama terletak pada garis l.
iv). Titik-titik sebidang (koplanar)
Dua atau lebih dikatakan sebidang jika titik-titik tersebut terletak pada bidang yang sama. Pada Gambar di bawah ini, titik C dan titik D dikatakan sebidang, karena sama-sama terletak pada bidang $ \beta $ .
i). Posisi titik terhadap garis
ii). Posisi titik terhadap bidang
iii). Titik-titik segaris (kolinear)
Dua atau lebih dikatakan segaris jika titik-titik tersebut terletak pada garis yang sama. Pada Gambar di bawah ini, titik A dan titik B dikatakan segaris, karena sama-sama terletak pada garis l.
iv). Titik-titik sebidang (koplanar)
Dua atau lebih dikatakan sebidang jika titik-titik tersebut terletak pada bidang yang sama. Pada Gambar di bawah ini, titik C dan titik D dikatakan sebidang, karena sama-sama terletak pada bidang $ \beta $ .
Pengertian Garis, Segmen Garis, dan SInar Garis
Berikut pengertian garis, segmen garis, dan sinar garis :
$\spadesuit $ Garis
Garis yang melalui titik A dan B disebut garis AB , dinotasikan $ \overleftrightarrow{AB} $ . Tanda panah pada kedua ujung $ \overleftrightarrow{AB} \, $ artinya dapat diperpanjang sampai tak terbatas.
$\spadesuit $ Segmen Garis (ruas garis)
Gambar di bawah ini adalah ruas garis (segmen) AB, disimbolkan $ \overline{AB} $ , dengan titik A dan B merupakan titik ujung ruas garis AB.
$\spadesuit $ Sinar Garis
Sinar AB, disimbolkan $ \overrightarrow{AB} $ , memiliki titik pangkal A, tetapi tidak memiliki titik ujung. Begitu juga sebaliknya, Sinar BA, disimbolkan $ \overrightarrow{BA} $ , memiliki titik pangkal B, tetapi tidak memiliki titik ujung.
Jika titik C terdapat di antara titik A dan B, maka $ \overrightarrow{CA} $ dan $ \overrightarrow{CB} $ merupakan dua sinar yang berlawanan .
Catatan :
dari gambar di atas diperoleh : $ \overleftrightarrow{AB} = \overleftrightarrow{BA} , \, \overline{AB} = \overline{BA} , \, $ dan $ \overrightarrow{AB} \neq \overrightarrow{BA} $
$\spadesuit $ Garis
Garis yang melalui titik A dan B disebut garis AB , dinotasikan $ \overleftrightarrow{AB} $ . Tanda panah pada kedua ujung $ \overleftrightarrow{AB} \, $ artinya dapat diperpanjang sampai tak terbatas.
$\spadesuit $ Segmen Garis (ruas garis)
Gambar di bawah ini adalah ruas garis (segmen) AB, disimbolkan $ \overline{AB} $ , dengan titik A dan B merupakan titik ujung ruas garis AB.
$\spadesuit $ Sinar Garis
Sinar AB, disimbolkan $ \overrightarrow{AB} $ , memiliki titik pangkal A, tetapi tidak memiliki titik ujung. Begitu juga sebaliknya, Sinar BA, disimbolkan $ \overrightarrow{BA} $ , memiliki titik pangkal B, tetapi tidak memiliki titik ujung.
Jika titik C terdapat di antara titik A dan B, maka $ \overrightarrow{CA} $ dan $ \overrightarrow{CB} $ merupakan dua sinar yang berlawanan .
Catatan :
dari gambar di atas diperoleh : $ \overleftrightarrow{AB} = \overleftrightarrow{BA} , \, \overline{AB} = \overline{BA} , \, $ dan $ \overrightarrow{AB} \neq \overrightarrow{BA} $
Kedudukan antara dua garis
Ada tiga kemungkinan kedudukan dua garis yaitu :
i). Dua garis berpotongan di satu titik (kongkuren)
Garis m dikatakan memotong garis k, jika kedua garis bertemu pada satu titik.
ii). Dua garis sejajar
Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan.
iii). Dua garis berimpit
Garis m dan garis k dikatakan berhimpit, jika garis m terletak pada garis k (atau sebaliknya). Garis m dan garis k dikatakan berhimpit, dalam sajian geomtri, direpresentasikan sebagai garis yang sama (identik).
i). Dua garis berpotongan di satu titik (kongkuren)
Garis m dikatakan memotong garis k, jika kedua garis bertemu pada satu titik.
ii). Dua garis sejajar
Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan.
iii). Dua garis berimpit
Garis m dan garis k dikatakan berhimpit, jika garis m terletak pada garis k (atau sebaliknya). Garis m dan garis k dikatakan berhimpit, dalam sajian geomtri, direpresentasikan sebagai garis yang sama (identik).
Sifat-sifat Garis Sejajar
Berikut beberapa sifat-sifat garis sejajar :
i). Sifat 1) : Melalui satu titik di luar sebuah garis dapat ditarik tepat satu garis yang sejajar dengan garis itu.
keterangan :
Dari titik C di luar garis m dibuat garis sejajar garis m yang melalui titik tersebut, ternyata hanya dapat dibuat tepat satu garis, yaitu garis n.
ii). Sifat 2) : Jika sebuah garis memotong salah satu dari dua garis yang sejajar maka garis itu juga akan memotong garis yang kedua.
keterangan :
Pada gambar di di atas diketahui garis m sejajar dengan garis n (m // n) dan garis l memotong garis m di titik P. Apabila garis l yang memotong garis m di titik P diperpanjang maka garis l akan memotong garis n di satu titik, yaitu titik Q.
ii). Sifat 3) : Jika sebuah garis sejajar dengan dua garis lainnya maka kedua garis itu sejajar pula satu sama lain.
keterangan :
Pada gambar tersebut, mula-mula diketahui garis k sejajar dengan garis l dan garis m. Tampak bahwa garis k sejajar dengan garis l atau dapat ditulis k // l dan garis k sejajar dengan garis m, ditulis k // m. Karena k // l dan k // m, maka l // m. Hal ini berarti bahwa garis l sejajar dengan garis m.
i). Sifat 1) : Melalui satu titik di luar sebuah garis dapat ditarik tepat satu garis yang sejajar dengan garis itu.
keterangan :
Dari titik C di luar garis m dibuat garis sejajar garis m yang melalui titik tersebut, ternyata hanya dapat dibuat tepat satu garis, yaitu garis n.
ii). Sifat 2) : Jika sebuah garis memotong salah satu dari dua garis yang sejajar maka garis itu juga akan memotong garis yang kedua.
keterangan :
Pada gambar di di atas diketahui garis m sejajar dengan garis n (m // n) dan garis l memotong garis m di titik P. Apabila garis l yang memotong garis m di titik P diperpanjang maka garis l akan memotong garis n di satu titik, yaitu titik Q.
ii). Sifat 3) : Jika sebuah garis sejajar dengan dua garis lainnya maka kedua garis itu sejajar pula satu sama lain.
keterangan :
Pada gambar tersebut, mula-mula diketahui garis k sejajar dengan garis l dan garis m. Tampak bahwa garis k sejajar dengan garis l atau dapat ditulis k // l dan garis k sejajar dengan garis m, ditulis k // m. Karena k // l dan k // m, maka l // m. Hal ini berarti bahwa garis l sejajar dengan garis m.