Rumus Luas Segi Empat Tali Busur
Bangun segi empat tali busur adalah sebuah bangun datar yang memiliki empat sisi dimana keempat sisinya ada pada
sebuah lingkaran. Jumlah sudut-sudut yang berhadapan pada segi empat tali busur adalah $ 180^\circ $ . Untuk lebih jelas, perhatikan segi empat tali busur ABCD berikut.
Luas segi empat tali busur ABCD adalah :
$ \begin{align} L = \sqrt{(s-a)(s-b)(s-c)(s-d)} \end{align} $
dengan $ s = \frac{a+b+c+d}{2} $
Luas segi empat tali busur ABCD adalah :
$ \begin{align} L = \sqrt{(s-a)(s-b)(s-c)(s-d)} \end{align} $
dengan $ s = \frac{a+b+c+d}{2} $
Misalkan panjang $ AB = a, \, BC = b, \, CD = c, \, AD = a $
*). Perhatikan sudut B dan D, jumlahnya $ 180^\circ $
$ B + D = 180^\circ \rightarrow D = 180^\circ - B $
Sehingga dengan sudut-sudut berelasi diperoleh :
$ \cos D = \cos (180^\circ - B) \rightarrow \cos D = - \cos B $
$ \sin D = \sin (180^\circ - B) \rightarrow \sin D = \sin B $
*). Aturan cosinus untuk menentukan panjang AC
Segitiga BAC, $ AC^2 = a^2 + b^2 - 2ab \cos B $
Segitiga DAC, $ AC^2 = c^2 + d^2 - 2cd \cos D \rightarrow AC^2 = c^2 + d^2 - 2cd (-\cos B) $
*). Panjang AC sama dari kedua segitiga BAC dan DAC
$ \begin{align} AC^2 & = AC^2 \\ a^2 + b^2 - 2ab \cos B & = c^2 + d^2 - 2cd (-\cos B) \\ a^2 + b^2 - 2ab \cos B & = c^2 + d^2 + 2cd \cos B \\ \cos B & = \frac{a^2 +b^2 - c^2 - d^2}{2(ab+cd)} \end{align} $
*). Bentuk pemfaktoran : $ X^2 - Y^2 = (X+Y)(X-Y) $
*). Identitas trigonometri : $ \sin ^2 B + \cos ^2 B = 1 $
Misalkan $ s = \frac{a+b+c+d}{2} $
$ \begin{align} \sin ^2 B & = 1 - \cos ^2 B \\ \sin ^2 B & = (1 + \cos B )(1 - \cos B ) \\ & = \left(1 + \frac{a^2 +b^2 - c^2 - d^2}{2(ab+cd)} \right)\left(1 - \frac{a^2 +b^2 - c^2 - d^2}{2(ab+cd)} \right) \\ & = \frac{a^2 + b^2 + 2ab - (c^2 + d^2 - 2cd)}{2(ab+cd)} . \frac{c^2 + d^2 + 2cd - (a^2 + b^2 - 2ab)}{2(ab+cd)} \\ & = \frac{[(a+b)^2 - (c-d)^2]}{2(ab+cd)} . \frac{[(c+d)^2 - (a-b)^2]}{2(ab+cd)} \\ & = \frac{(a+b+c-d)(a+b-c+d)}{2(ab+cd)} . \frac{(c+d+a-b)(c+d-a+b)}{2(ab+cd)} \\ & = \frac{4(s-d)(s-c)}{2(ab+cd)} . \frac{4(s-b)(s-a)}{2(ab+cd)} \\ \sin ^2 B & = \frac{4(s-a)(s-b)(s-c)(s-d)}{(ab+cd)^2} \\ \sin B & = \sqrt{\frac{4(s-a)(s-b)(s-c)(s-d)}{(ab+cd)^2} } \\ \sin B & = \frac{2}{(ab+cd)} \sqrt{(s-a)(s-b)(s-c)(s-d)} \end{align} $
*). Menentukan luas segitiga :
$ \text{Luas BAC } = \frac{1}{2}ab\sin B $
$ \text{Luas DAC } = \frac{1}{2}cd\sin D = \frac{1}{2}cd\sin B $
*). Menentukan luas segi empat tali busur ABCD :
$ \begin{align} \text{Luas ABCD } & = \text{Luas BAC } + \text{Luas DAC } \\ & = \frac{1}{2}ab\sin B + \frac{1}{2}cd\sin B \\ & = \frac{1}{2}(ab+cd)\sin B \\ & = \frac{1}{2}(ab+cd). \frac{2}{(ab+cd)} \sqrt{(s-a)(s-b)(s-c)(s-d)} \\ & = \sqrt{(s-a)(s-b)(s-c)(s-d)} \end{align} $
Jadi, terbukti luas segi empat tali busurnya.
Contoh :
Perhatikan gambar berikut. Titik A, B, C, dan D ada pada lingkaran L dengan panjang AB = 1, BC = 2, CD = 3 dan AD = 4.
Tentukan luas segi empat ABCD tersebut?
Penyelesaian :
Misalkan $ a = 1, \, b = 2, \, c = 3, \, d = 4 $
*). Menentukan nilai $ s $
$ s = \frac{a+b+c+d}{2} = \frac{1+2+3+4}{2} = 5 $
*). Menentukan luas segi empat tali busur ABCD :
$ \begin{align} L & = \sqrt{(s-a)(s-b)(s-c)(s-d)} \\ & = \sqrt{(5-1)(5-2)(5-3)(5-4)} \\ & = \sqrt{4.3.2.1} \\ & = 2\sqrt{6} \end{align} $
Jadi, luas segi empat tali busurnya adalah $ 2 \sqrt{6} $ .