Persamaan Garis Singgung melalui Suatu Titik pada Lingkaran berpusat $ P(0, 0) $ dan berjari-jari $ r $
Persamaan lingkarannya : $ x^2 + y^2 = r^2 $
Persamaan garis singgungnya : $ \begin{align} x_1.x + y_1.y = r^2 \end{align} $
Persamaan garis singgungnya : $ \begin{align} x_1.x + y_1.y = r^2 \end{align} $
*). Ilustrasi garis singgung dan lingkarannya,
*). Misalnya titik A($x_1, y_1$) terletak pada sebuah lingkaran yang berpusat di $ P(0, 0) $ dan berjari-jari $ r $ yaitu, $ x^2 + y^2 = r^2. $ Asumsikan $ x_1 \neq 0 $ dan $ y_1 \neq 0 $ .
Gradien garis PA adalah $ m_{PA} = \frac{y_1}{x_1} \, $ . Karena garis $ g \, $ tegak lurus garis PA, maka
$ m_g . m_{PA} = - 1 \rightarrow m_g. \frac{y_1}{x_1} = -1 \rightarrow m_g = - \frac{x_1}{y_1} $ .
*).Persamaan garis $ g \, $ melalui titik $ (x_1,y_1) \, $ dengan $ m_g = - \frac{x_1}{y_1} $ .
$ \begin{align} (y - y_1 ) & = m_g ( x- x_1) \\ (y - y_1 ) & = - \frac{x_1}{y_1} ( x- x_1) \\ y_1(y - y_1 ) & = - x_1 ( x- x_1) \\ y_1y - y_1^2 & = - x_1 x- x_1^2 \\ x_1 x + y_1y & = x_1^2 + y_1^2 \, \, \, \, \text{....pers(i)} \end{align} $
*). Karena titik A($x_1, y_1$) terletak pada lingkaran, maka substitusi titik A($x_1, y_1$) ke lingkaran : $ x^2 + y^2 = r^2 \, $ , diperoleh : $ x_1^2 + y_1^2 = r^2 $
*). Substitusi bentuk $ x_1^2 + y_1^2 = r^2 \, $ ke pers(i)
$ \begin{align} x_1 x + y_1y & = x_1^2 + y_1^2 \\ x_1 x + y_1y & = r^2 \end{align} $
Jadi, persamaan garis singgung lingkaran yang berpusat di titik $ P(0, 0) $ dan berjari-jari $ r $ yang melalui titik A($x_1, y_1$) pada lingkaran $ x^2 + y^2 = r^2 $ adalah $ x_1 x + y_1y = r^2 $ .
Persamaan Garis Singgung melalui Suatu Titik pada Lingkaran berpusat $ P(a,b) $ dan berjari-jari $ r $
Persamaan lingkarannya : $ (x-a)^2 + (y-b)^2 = r^2 $
Persamaan garis singgungnya : $ \begin{align} (x_1-a)(x-a) + (y_1-b)(y-b) = r^2 \end{align} $
Persamaan garis singgungnya : $ \begin{align} (x_1-a)(x-a) + (y_1-b)(y-b) = r^2 \end{align} $
*). Ilustrasi garis singgung dan lingkarannya,
*). Misalnya titik A($x_1, y_1$) terletak pada sebuah lingkaran yang berpusat di $ P(a,b) $ dan berjari-jari $ r $ yaitu, $ (x-a)^2 + (y-b)^2 = r^2. $ Asumsikan $ x_1 \neq 0 $ dan $ y_1 \neq 0 $ .
Gradien garis PA adalah $ m_{PA} = \frac{y_1-b}{x_1-a} \, $ . Karena garis $ g \, $ tegak lurus garis PA, maka
$ m_g . m_{PA} = - 1 \rightarrow m_g. \frac{y_1-b}{x_1-a} = -1 \rightarrow m_g = - \frac{x_1-a}{y_1-b} $ .
*).Persamaan garis $ g \, $ melalui titik $ (x_1,y_1) \, $ dengan $ m_g = - \frac{x_1-a}{y_1-b} $ .
$ \begin{align} (y - y_1 ) & = m_g ( x- x_1) \\ (y - y_1 ) & = - \frac{x_1-a}{y_1-b} ( x- x_1) \\ (y_1-b)(y - y_1 ) & = - (x_1 -a)( x- x_1) \\ y_1y - y_1^2 - by + by_1 & = -(x_1x -x_1^2 - ax + ax_1) \\ x_1x -ax + ax_1 + y_1y - by + by_1 & = x_1^2 + y_1^2 \, \, \, \, \text{....pers(i)} \end{align} $
*). Karena titik A($x_1, y_1$) terletak pada lingkaran, maka substitusi titik A($x_1, y_1$) ke lingkaran : $ (x-a)^2 + (y-b)^2 = r^2 \, $ , diperoleh :
$ \begin{align} (x_1-a)^2 + (y_1-b)^2 & = r^2 \\ x_1^2 - 2ax_1 + a^2 + y_1^2 - 2by_1 + b^2 & = r^2 \\ x_1^2 + y_1^2 & = r^2 + 2ax_1 - a^2 + 2by_1 - b^2 \end{align} $
*). Substitusi bentuk $ x_1^2 + y_1^2 = r^2 + 2ax_1 - a^2 + 2by_1 - b^2 \, $ ke pers(i)
$ \begin{align} x_1x -ax + ax_1 + y_1y - by + by_1 & = x_1^2 + y_1^2 \\ x_1x -ax + ax_1 + y_1y - by + by_1 & = r^2 + 2ax_1 - a^2 + 2by_1 - b^2 \\ (x_1x -ax - ax_1 + a^2) + (y_1y - by - by_1 + b^2) & = r^2 \\ (x_1-a)(x-a) + (y_1 - b)(y -b) & = r^2 \end{align} $
Jadi, persamaan garis singgung lingkaran yang berpusat di titik $ P(a,b) $ dan berjari-jari $ r $ yang melalui titik A($x_1, y_1$) pada lingkaran $ (x-a)^2 + (y-b)^2 = r^2 $ adalah $ (x_1-a)(x-a) + (y_1 - b)(y -b) = r^2 $ .
Persamaan Garis Singgung melalui Suatu Titik pada Lingkaran berpusat $ P(a,b) $ dan berjari-jari $ r $
Persamaan lingkarannya : $ x^2 + y^2 + Ax + By + C = 0 $
dengan $ a = -\frac{A}{2}, b = - \frac{B}{2}, \, $ dan $ C = a^2 + b^2 - r^2 $
Persamaan garis singgungnya : $ \begin{align} x_1.x + y_1.y + A \frac{(x_1+x)}{2} + B \frac{(y_1 + y)}{2} + C = 0 \end{align} $
dengan $ a = -\frac{A}{2}, b = - \frac{B}{2}, \, $ dan $ C = a^2 + b^2 - r^2 $
Persamaan garis singgungnya : $ \begin{align} x_1.x + y_1.y + A \frac{(x_1+x)}{2} + B \frac{(y_1 + y)}{2} + C = 0 \end{align} $
*). Untuk pembuktian persamaan garis singgungnya, kita cukup menjabarkan gari singgung $ (x_1-a)(x-a) + (y_1 - b)(y -b) = r^2 \, $ dan substitusikan bentuk $ a = -\frac{A}{2}, b = - \frac{B}{2}, \, $ dan $ C = a^2 + b^2 - r^2 $
*). Penjabaran bentuk $ (x_1-a)(x-a) + (y_1 - b)(y -b) = r^2 $
$ \begin{align} (x_1-a)(x-a) + (y_1 - b)(y -b) & = r^2 \\ (x_1x -ax - ax_1 + a^2) + (y_1y - by - by_1 + b^2) & = r^2 \\ x_1x + y_1y - a(x_1 + x) - b(y_1+y) + a^2 + b^2 - r^2 & = 0 \\ x_1x + y_1y - (-\frac{A}{2}).(x_1 + x) - (-\frac{B}{2})(y_1+y) + C & = 0 \\ x_1x + y_1y + A\frac{(x_1+x)}{2} +B\frac{(y_1 + y)}{2} + C & = 0 \end{align} $
Jadi, persamaan garis singgung lingkaran yang berpusat di titik $ P(a,b) $ dan berjari-jari $ r $ yang melalui titik A($x_1, y_1$) pada lingkaran $ x^2 + y^2 + Ax + By + C = 0 $ adalah $ x_1x + y_1y + A\frac{(x_1+x)}{2} +B\frac{(y_1 + y)}{2} + C = 0 $ .
Persamaan Garis Singgung dengan Gradien $ m $ terhadap Lingkaran $ x^2 + y^2 = r^2 $
Persamaan garis singgungnya : $ \begin{align} y = mx \pm r \sqrt{1 + m^2} \end{align} $
*). Misalkan persamaan garis singgungnya : $ y = mx + n $
*). Substitusi persamaan garis ke lingkaran : $ x^2 + y^2 = r^2 $
$ \begin{align} x^2 + y^2 & = r^2 \\ x^2 + (mx+n)^2 & = r^2 \\ x^2 + m^2x^2 + 2mnx + n^2 & = r^2 \\ (m^2+1)x^2 + 2mnx + n^2 - r^2 & = 0 \\ a = m^2 + 1, \, b = 2mn , \, c & = n^2 - r^2 \end{align} $
*). Syarat garis menyinggung lingkaran : $ D = 0 $
$ \begin{align} D & = 0 \\ b^2 - 4ac & = 0 \\ (2mn)^2 - 4.(m^2 + 1) . (n^2 - r^2 ) & = 0 \\ 4m^2n^2 - 4(n^2 + m^2n^2 - r^2 - m^2r^2) & = 0 \, \, \, \, \text{(bagi 4)} \\ m^2n^2 - n^2 - m^2n^2 + r^2 + m^2r^2 & = 0 \, \, \, \, \text{(bagi 4)} \\ n^2 & = r^2 + m^2r^2 \\ n^2 & = r^2 (1 + m^2) \\ n & = \pm \sqrt{ r^2 (1 + m^2) } \\ n & = \pm r\sqrt{ 1 + m^2} \end{align} $
*). Substitusi nilai $ n = \pm r\sqrt{ 1 + m^2} \, $ ke garis :
$ \begin{align} y & = mx + n \\ y & = mx + \pm r\sqrt{ 1 + m^2} \end{align} $
Jadi, terbukti bahwa persamaan garis singgungnya adalah $ y = mx + \pm r\sqrt{ 1 + m^2} $
Persamaan Garis Singgung dengan Gradien $ m $ terhadap Lingkaran $ (x-a)^2 + (y-b)^2 = r^2 \, $ atau $ x^2 + y^2 + Ax + By + C = 0 $
Persamaan garis singgungnya : $ \begin{align} y - b = m(x-a) \pm r \sqrt{1 + m^2} \end{align} $
*). Misalkan persamaan garis singgungnya : $ y = mx + n $
*). Substitusi persamaan garis ke lingkaran : $ (x-a)^2 + (y-b)^2 = r^2 $
$ \begin{align} (x-a)^2 + (y-b)^2 = r^2 \\ (x-a)^2 + (mx + n -b)^2 = r^2 \\ x^2 -2ax + a^2 + m^2x^2 + 2m(n-b)x + (n-b)^2 - r^2 & = 0 \\ (m^2 + 1)x^2 + [2m(n-b) - 2a ]x + (n-b)^2 + a^2 - r^2 & = 0 \\ a = m^2 + 1, \, b = [2m(n-b) - 2a ] , \, c & = (n-b)^2 + a^2 - r^2 \end{align} $
*). Syarat garis menyinggung lingkaran : $ D = 0 $
$ \begin{align} D & = 0 \\ b^2 - 4ac & = 0 \\ [2m(n-b) - 2a ]^2 - 4.(m^2 + 1) . ((n-b)^2 + a^2 - r^2 ) & = 0 \\ (b-am-n)^2 & = r^2(1+m^2) \\ b - am - n & = \pm \sqrt{r^2(1+m^2)} \\ b - am - n & = \pm r \sqrt{1+m^2} \\ n & = b - am \pm r \sqrt{1+m^2} \end{align} $
*). Substitusi nilai $ n = b - am \pm r \sqrt{1+m^2} \, $ ke garis :
$ \begin{align} y & = mx + n \\ y & = mx + b - am \pm r \sqrt{1+m^2} \\ y - b & = m(x-a) \pm r \sqrt{1+m^2} \end{align} $
Jadi, terbukti bahwa persamaan garis singgungnya adalah $ y - b = m(x-a) \pm r \sqrt{1+m^2} $