Meskipun Bentuk Umum Fungsi Kuadrat (FK) itu sangatlah mudah, tapi teman-teman harus ingat dan pahami baik-baik terutama untuk nilai dari koefisien-koefisien untuk setiap sukunya yaitu nilai $ a, \, b, \, $ dan $ \, c $. Dari materi paling dasar inilah yang akan menjadi pondasi kita untuk dengan mudah dalam mempelajari materi fungsi kuadrat secara keseluruhannya. Di samping itu juga, materi fungsi kuadrat sebenarnya sudah kita pelajari di tingkat SMP dan kita lanjutkan lagi di SMA, artinya untuk menguasai materinya tidaklah sulit. Hanya saja terkadang kita akan kesulitan untuk menyelesaikan soal-soal terutama yang tingkat kesulitannya sudah tinggi seperti soal SBMPTN atau soal olimpiade.
Adapun bentuk umum fungsi kuadrat :
$ f(x) = ax^2 + bx + c $
Atau
$ y = ax^2 + bx + c $
dengan $ a, \, b, \, c \in R \, $ dan $ a \neq 0 $
$ f(x) = ax^2 + bx + c $
Atau
$ y = ax^2 + bx + c $
dengan $ a, \, b, \, c \in R \, $ dan $ a \neq 0 $
Keterangan :
$ x \, $ disebut variabel bebasnya
$ a \, $ adalah koefisien $ x^2 $
$ b \, $ adalah koefisien $ x $
$ c \, $ disebut konstanta
Nilai fungsi $ f(x) \, $ jika digambar/diplot pada cartesius mewakili nilai $ y \, $ (sumbu Y) , sehingga
$ f(x) \, $ bisa diganti dengan $ y \, $. Semua nama fungsi bisa diganti dengan $ y \, $ , artinya ini berlaku umum. $ x \, $ disebut variabel bebasnya
$ a \, $ adalah koefisien $ x^2 $
$ b \, $ adalah koefisien $ x $
$ c \, $ disebut konstanta
Apa bedanya fungsi kuadrat dengan persamaan kuadrat? Persamaan kuadrat $ ax^2+bx+c=0 \, $ memiliki variabel $ x \, $ yang nilainya terbatas (disebut akar-akar atau penyelesaian persamaan kuadrat) , maksimal ada dua yaitu $ x_1 \, $ dan $ x_2 \, $ . Sementara fungsi kuadrat $ f(x) = ax^2 + bx + c \, $ memiliki variabel bebas $ x \, $ yang nilainya tak terbatas (nilai $ x \, $ bisa digantikan dengan sembarang bilangan) dan bisa diplot dalam sebuah grafik yang biasanya disebut parabola.
Berikut contoh - contoh fungsi kuadrat :
Contoh 1.
Contoh 2.
Pada fungsi kuadrat, materi yang akan dipelajari diantaranya sketsa grafik fungsi kuadrat, teknik menggeser, ciri-ciri parabola ,
hubungan garis dan parabola, menyusun fk, dan terapan fungsi kuadrat. Semoga materi pembuka (bentuk umum fungsi kuadrat) ini bisa membantu, dan semangat belajar untuk
menguasai materi fungsi kuadrat. Perlu juga kita ketahui bersama, soal-soal yang berkaitan dengan fungsi kuadrat biasanya selalu ada untuk UN dan tes seleksi masuk perguruan tinggi negeri, yang mana setiap tahunnya soalnya selalu berkembang dan akan semakin sulit dibandingkan dengan tahun-tahun sebelumnya.
Berikut adalah contoh fungsi kuadrat :
(i) . $ f(x) = x^2 + 3x - 5 $
(ii) . $ y = -3x^2 + 6 $
(iii) . $ y = \frac{1}{3}x^2 $
(iv) . $ f(x) = 2x^2 - 5x $
(i) . $ f(x) = x^2 + 3x - 5 $
(ii) . $ y = -3x^2 + 6 $
(iii) . $ y = \frac{1}{3}x^2 $
(iv) . $ f(x) = 2x^2 - 5x $
Contoh 2.
Dari bentuk fungsi kuadrat berikut dengan variabel bebas $ x \, $ , tentukan nilai $ a , \, b, \, $ dan $ c $
(i). $ f(x) = x^2 - 5x^2 + 3 $
(ii) . $ f(x) = -3x^2 - 4x $
(iii) . $ y = px^2 + 9 $
(iv) . $ y = 2x^2 $
(i). $ f(x) = x^2 - 5x^2 + 3 $
(ii) . $ f(x) = -3x^2 - 4x $
(iii) . $ y = px^2 + 9 $
(iv) . $ y = 2x^2 $
Penyelesaian :
Bentuk umum fungsi kuadrat : $ f(x) = ax^2 + bx + c $
(i). $ f(x) = x^2 - 5x^2 + 3 \rightarrow a = 1, \, b = -5 , \, c = 3 $
(ii) . $ f(x) = -3x^2 - 4x \rightarrow a = -3, \, b = -4 , \, c = 0 $
(iii) . $ y = px^2 + 9 \rightarrow a = p, \, b = 0 , \, c = 9 $
(iv) . $ y = 2x^2 \rightarrow a = 2, \, b = 0 , \, c = 0 $
Bentuk umum fungsi kuadrat : $ f(x) = ax^2 + bx + c $
(i). $ f(x) = x^2 - 5x^2 + 3 \rightarrow a = 1, \, b = -5 , \, c = 3 $
(ii) . $ f(x) = -3x^2 - 4x \rightarrow a = -3, \, b = -4 , \, c = 0 $
(iii) . $ y = px^2 + 9 \rightarrow a = p, \, b = 0 , \, c = 9 $
(iv) . $ y = 2x^2 \rightarrow a = 2, \, b = 0 , \, c = 0 $