Langkah - Langkah Menggambar Grafik Fungsi Menggunakan Turunan
Berikut langkah-langkah mengambar grafik suatu fungsi menggunakan turunan :
i). Menentukan titik potong (tipot) dengan sumbu-sumbu koordinat (sumbu X dan sumbu Y).
Titik potong sumbu X, substitusi $ y = 0 $ .
Titik potong sumbu Y, substitusi $ x = 0 $ .
ii). Menentukan titik-titik stasioner dan jenisnya (titik balik minimum, titik balik maksimum, dan titik belok).
iii). Menentukan titik bantuan lain agar grafiknya lebih mudah sketsa, atau bisa juga secara umum menentukan nilai $ y $ untuk $ x $ besar positif dan untuk $ x $ besar negatif.
i). Menentukan titik potong (tipot) dengan sumbu-sumbu koordinat (sumbu X dan sumbu Y).
Titik potong sumbu X, substitusi $ y = 0 $ .
Titik potong sumbu Y, substitusi $ x = 0 $ .
ii). Menentukan titik-titik stasioner dan jenisnya (titik balik minimum, titik balik maksimum, dan titik belok).
iii). Menentukan titik bantuan lain agar grafiknya lebih mudah sketsa, atau bisa juga secara umum menentukan nilai $ y $ untuk $ x $ besar positif dan untuk $ x $ besar negatif.
1). Gambarlah grafik kurva $ y = 3x^2 - x^3 $.
Penyelesaian :
i). Menentukan titik potong pada sumbu-sumbu :
*). Tipot sumbu X, substitusi $ y = 0 $
$ \begin{align} y = 0 \rightarrow y & = 3x^2 - x^3 \\ 0 & = 3x^2 - x^3 \\ 3x^2 - x^3 & = 0 \\ x^2 ( 3 - x) & = 0 \\ x = 0 \vee x & = 3 \end{align} $
Sehingga titik potong sumbu X adalah (0,0) dan (3,0).
*). Tipot sumbu Y, substitusi $ x = 0 $
$ y = 3x^2 - x^3 = 3.0^2 - 0^3 = 0 $
Sehingga titik potong sumbu Y adalah (0,0).
ii). Menentukan titik-titik stasioner,
Fungsi : $ y = 3x^2 - x^3 $
$ f^\prime (x) = 6x - 3x^2 \, $ dan $ f^{\prime \prime } (x) = 6 - 6x $ .
*). Syarat stasioner : $ f^\prime (x) = 0 $
$ \begin{align} f^\prime (x) & = 0 \\ 6x - 3x^2 & = 0 \\ 3x ( 2 - x) & = 0 \\ x = 0 \vee x & = 2 \end{align} $
*). Nilai stasionernya : substitusi ke fungsi awal.
Untuk $ x = 0 \, $ , nilai stasionernya $ f(0) = 3.0^2 - 0^3 = 0 $
titik stasionernya (0,0) .
Untuk $ x = 2 \, $ , nilai stasionernya $ f(2) = 3.2^2 - 2^3 = 4 $
titik stasionernya (2,4).
*). Menentukan jenis stasionernya, gunakan turunan kedua : $ f^{\prime \prime } (x) = 6 - 6x $
Untuk $ x = 0 \rightarrow f^{\prime \prime } (0) = 6 - 6.0 = 6 \, $ (positif) , jenisnya minimum.
Untuk $ x = 2 \rightarrow f^{\prime \prime } (2) = 6 - 6.2 = -6 \, $ (negatif) , jenisnya maksimum.
Artinya titik (0,0) adalah titik balik minimum dan titik (2,4) adalah titik balik maksimum.
iii). Berdasarkan fungsi $ y = 3x^2 - x^3 , \, $ kita substitusi beberapa nilai $ x \, $ yaitu :
Untuk $ x \, $ semakin besar, nilai $ y \, $ semakin besar negatif (ke bawah) dan untuk $ x \, $ semakin kecil, nilai $ y \, $ semakin besar positif (ke atas).
2). Gambarlah grafik kurva $ y = x^4 - 4x^3 $ .
Penyelesaian :
i). Menentukan titik potong pada sumbu-sumbu :
*). Tipot sumbu X, substitusi $ y = 0 $
$ \begin{align} y = 0 \rightarrow y & = x^4 - 4x^3 \\ 0 & = x^4 - 4x^3 \\ x^4 - 4x^3 & = 0 \\ x^3 ( x - 4 ) & = 0 \\ x = 0 \vee x & = 4 \end{align} $
Sehingga titik potong sumbu X adalah (0,0) dan (4,0).
*). Tipot sumbu Y, substitusi $ x = 0 $
$ y = x^4 - 4x^3 = 0^4 - 4.0^3 = 0 $
Sehingga titik potong sumbu Y adalah (0,0).
ii). Menentukan titik-titik stasioner,
Fungsi : $ y = x^4 - 4x^3 $
$ f^\prime (x) = 4x^3 - 12x^2 \, $ dan $ f^{\prime \prime } (x) = 12x^2 - 24x $ .
*). Syarat stasioner : $ f^\prime (x) = 0 $
$ \begin{align} f^\prime (x) & = 0 \\ 4x^3 - 12x^2 & = 0 \\ 4x^2 (x - 3) & = 0 \\ x = 0 \vee x & = 3 \end{align} $
*). Nilai stasionernya : substitusi ke fungsi awal.
Untuk $ x = 0 \, $ , nilai stasionernya $ f(0) = 0^4 - 4.0^3 = 0 $
titik stasionernya (0,0) .
Untuk $ x = 3 \, $ , nilai stasionernya $ f(2) = 3^4 - 4.3^3 = -27 $
titik stasionernya (3,-27).
*). Menentukan jenis stasionernya, gunakan turunan kedua : $ f^{\prime \prime } (x) = 12x^2 - 24x $
Untuk $ x = 0 \rightarrow f^{\prime \prime } (0) = 12.0^2 - 24.0 = 0 \, $ (nol) , jenisnya titik belok.
Untuk $ x = 3 \rightarrow f^{\prime \prime } (3) = 12.3^2 - 24.3 = 36 \, $ (positif) , jenisnya minimum.
Artinya titik (0,0) adalah titik belok dan titik (3,27) adalah titik balik minimum.
iii). Berdasarkan fungsi $ y = x^4 - 4x^3 , \, $ kita substitusi beberapa nilai $ x \, $ yaitu :
Untuk $ x \, $ semakin besar, nilai $ y \, $ semakin besar positif (ke atas) dan untuk $ x \, $ semakin kecil, nilai $ y \, $ semakin besar positif (ke atas).
3). Gambarlah grafik kurva $ y = \sin x \, $ untuk $ 0 \leq x \leq 360^\circ $ .
Penyelesaian :
i). Menentukan titik potong pada sumbu-sumbu :
*). Tipot sumbu X, substitusi $ y = 0 $
$ \begin{align} y = 0 \rightarrow y & = \sin x \\ 0 & = \sin x \\ \sin x & = 0 \\ x = 0 , \, x = 180^\circ = \pi \vee x & = 360^\circ = 2\pi \end{align} $
Sehingga titik potong sumbu X adalah $ (0,0), \, (180^\circ , 0), \, (360^\circ, 0) $ .
*). Tipot sumbu Y, substitusi $ x = 0 $
$ y = \sin x = \sin 0 = 0 $
Sehingga titik potong sumbu Y adalah (0,0).
ii). Menentukan titik-titik stasioner,
Fungsi : $ y = \sin x $
$ f^\prime (x) = \cos x \, $ dan $ f^{\prime \prime } (x) = -\sin x $ .
*). Syarat stasioner : $ f^\prime (x) = 0 $
$ \begin{align} f^\prime (x) & = 0 \\ \cos x & = 0 \\ x = 90^\circ = \frac{1}{2}\pi \vee x & = 270^\circ = \frac{3}{2}\pi \end{align} $
*). Nilai stasionernya : substitusi ke fungsi awal.
Untuk $ x = 90^\circ \, $ , nilai stasionernya $ f(90^\circ) = \sin 90^\circ = 1 $
titik stasionernya ($ 90^\circ , 1$) .
Untuk $ x = 270^\circ \, $ , nilai stasionernya $ f(270^\circ) = \sin 270^\circ = -1 $
titik stasionernya ($ 270^\circ , -1$).
*). Menentukan jenis stasionernya, gunakan turunan kedua : $ f^{\prime \prime } (x) = -\sin x $
Untuk $ x = 90^\circ \rightarrow f^{\prime \prime } (90^\circ) = - \sin 90^\circ = -1 \, $ (negatif) , jenisnya maksimum.
Untuk $ x = 270^\circ \rightarrow f^{\prime \prime } (270^\circ) = -\sin 270^\circ = 1 \, $ (positif) , jenisnya minimum.
Artinya titik ($ 90^\circ , 1$) adalah titik balik maksimum dan titik ($ 270^\circ , -1$) adalah titik balik minimum.
Berikut gambar grafik fungsi $ y = \sin x \, $ pada interval $ 0 \leq x \leq 360^\circ $ .