Jarak Dua titik
Misalkan ada titik A($x_1,y_1$) dan titik B($x_2,y_2$), jarak kedua titik A dan B adalah :
Jarak = $ |AB| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 } $
Jarak = $ |AB| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 } $
Contoh :
Tentukan jarak titik A(1,2) dan titik B(-2, 6) !
Penyelesaian :
*). Jarak titik A dan B kita simbolkan $ |AB| $ :
$ \begin{align} |AB| & = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 } \\ & = \sqrt{(-2-1)^2 + (6-2)^2 } \\ & = \sqrt{(-3)^2 + (4)^2 } \\ & = \sqrt{9 + 16 } \\ & = \sqrt{25 } \\ & = 5 \end{align} $
Jadi, jarak A dan B adalah 5 satuan.
Panjang busur, Luas juring, dan Luas Tembereng
Berikut gambar busur, juring, dan tembereng pada lingkaran
Rumus dasarnya :
$\begin{align} \text{Panjang Busur AB } & = \frac{\alpha}{360^\circ} \times 2 \pi r \\ \text{Luas Juring AOB } & = \frac{\alpha}{360^\circ} \times \pi r^2 \\ \text{Luas Tembereng AB } & = \text{Luas Juring AOB } - \text{Luas Segitiga AOB } \end{align} $
dimana $ r = \, $ jari-jari lingkaran dan $ \pi = \frac{22}{7} = 3,14 $
Rumus dasarnya :
$\begin{align} \text{Panjang Busur AB } & = \frac{\alpha}{360^\circ} \times 2 \pi r \\ \text{Luas Juring AOB } & = \frac{\alpha}{360^\circ} \times \pi r^2 \\ \text{Luas Tembereng AB } & = \text{Luas Juring AOB } - \text{Luas Segitiga AOB } \end{align} $
dimana $ r = \, $ jari-jari lingkaran dan $ \pi = \frac{22}{7} = 3,14 $
Contoh :
Perhatikan Gambar di bawah ini. Diketahui panjang jari-jari OA = 10 cm. Jika besar $ \angle AOB = 60^\circ $ , hitunglah :
a). panjang AB ;
b). luas juring OAB;
c). luas tembereng AB.
Penyelesaian :
a). Panjang busur AB ,
$ \begin{align} \text{panjang busur AB } & = \frac{\alpha}{360^\circ} \times 2 \pi r \\ & = \frac{60^\circ}{360^\circ} \times 2 \times 3,14 \times 10 \\ & = \frac{1}{6} \times 62,8 \\ & = 10, 47 \end{align} $
b). luas juring OAB ,
$ \begin{align} \text{Luas Juring AOB } & = \frac{\alpha}{360^\circ} \times \pi r^2 \\ & = \frac{60^\circ}{360^\circ} \times 3,14 \times 10^2 \\ & = \frac{1}{6} \times 314 \\ & = 52,33 \end{align} $
*). Menentukan luas segitiga AOB :
Karena $ \angle AOB = 60^\circ $ , maka segitiga AOB sama sisi. Luas segitiga sama sisi adalah $ \text{Luas } = \frac{1}{4} a^2 \sqrt{3} $ dengan $ a \, $ adalah sisi segitiga atau di sini nilai $ a \, $ sama dengan jari-jari.
$\begin{align} \text{Luas Segitiga AOB } & = \frac{1}{4} a^2 \sqrt{3} \\ & = \frac{1}{4} 10^2 \sqrt{3} \\ & = 25\sqrt{3} = 43,30 \end{align} $
c). luas tembereng AB
$\begin{align} \text{Luas Tembereng AB } & = \text{Luas Juring AOB } - \text{Luas Segitiga AOB } \\ & = 52,33 - 43,30 \\ & = 9,03 \end{align} $
Jadi, panjang busur AB = 10,47 cm, luas juring AOB = 52,33 cm$^2$ , dan luas tembereng AB = 9,03 cm$^2$.
Aturan Cosinus pada segitiga
Diketahui segitiga seperti gambar berikut.
Tentukan besarnya sudut BAC?
Penyelesaian :
*). Menentukan nilai cosinus sudut BAC :
$ \begin{align} \cos A & = \frac{AC^2 + AB^2 - BC^2}{2.AC.AB} \\ & = \frac{4^2 + 6^2 - 5^2}{2.4.6} \\ & = \frac{16 + 36 - 25}{48} \\ \cos A & = \frac{27}{48} \\ \cos A & = \frac{9}{16} \end{align} $
*). Menentukan besar sudut BAC :
$ \begin{align} \cos \angle BAC & = \frac{9}{16} \\ \angle BAC & = arc \cos \frac{9}{16} \\ \angle BAC & = 55,77^\circ \end{align} $
Jadi, besar sudut BAC adalah $ 55,77^\circ $ .
Cara Menentukan besarnya sudut yang diketahui nilai cosinusnya menggunakan kalkulator
Untuk bisa menghitung besarnya sudut yang diketahui nilai cosinusnya, kita harus menggunakan kalkulator scientific.
Lankah-langkahnya :
Tekan tombol SHIFT --->>> tekan tombol COS
--->>> tekan ANGKAnya --->>> tekan =
Lankah-langkahnya :
Tekan tombol SHIFT --->>> tekan tombol COS
--->>> tekan ANGKAnya --->>> tekan =
Tentukan besarnya sudut BAC jika diketahui $ \cos \angle BAC = \frac{9}{16} $ !
Penyelesaian :
Tekan tombol SHIFT --->>> tekan tombol COS --->>> tekan $ \frac{9}{16} \, $ --->>> tekan = ,
maka hasilnya $ 55,77 $ . Ini artinya besar sudut BAC adalah $ 55,77^\circ $ .